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ABSTRACT

With a big success in data communication, wireless signals are now

exploited for fine-grained contactless activity sensing including

human respiration monitoring, finger gesture recognition, subtle

chin movement tracking when speaking, etc. Different from coarse-

grained body and limb movements, these fine-grained movements

are in the scale of millimetres and are thus difficult to be sensed.

While good sensing performance can be achieved at one location,

the performance degrades dramatically at a very nearby location.

In this paper, by revealing the effect of static multipaths in sensing,

we propose a novel method to add man-made “virtual” multipath

to significantly improve the sensing performance. With carefully

designed “virtual” multipath, we are able to boost the sensing per-

formance at each location purely in software without any extra

hardware.

We demonstrate the effectiveness of the proposed method on

three fine-grained sensing applications with just oneWi-Fi transcei-

ver-pair, each equipped with a single antenna. For respiration mon-

itoring, we can remove the “blind spots” and achieve full coverage

respiration sensing. For finger gesture recognition, our system can

significantly increase the recognition accuracy from 33% to 81%.

For chin movement tracking, we are able to count the number of

spoken syllables in a sentence at an accuracy of 92.8%.

CCS CONCEPTS

•Human-centered computing→Ubiquitous computing;Ubiq-

uitous and mobile computing systems and tools;
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1 INTRODUCTION

Wireless technologies have achieved a great success in data com-

munication in the last two decades. In recent years, the research

community has explored the opportunities of applying wireless

signals for sensing human being and our surrounding environment.

With pervasive Radio Frequency (RF) signals such as Wi-Fi and

RFID in our ambient environment, wireless sensing is able to enable

a large variety of new applications, ranging from coarse-grained

indoor localization [5, 39], trajectory tracking [15, 21, 25, 35, 36],

gait/gesture recognition [10, 12, 19, 23, 27, 33] to fine-grained vital

sign monitoring [6, 9, 16, 17, 29, 42–44], keystroke detection [7, 13]

and lip reading [28]. Compared to coarse-grained activities, sub-

tle fine-grained activities only cause very small signal variations

which are non-trivial to be captured. More severely, the sensing

performance is unstable and highly dependent on the target’s rel-

ative positions with respect to the transceivers. The “blind spots”

issue was reported in human respiration sensing research using

Wi-Fi signals [29, 41]. While good respiration sensing performance

can be achieved at some locations, the performance at other loca-

tions (blind spots) can be quite poor. The same issue happens to

other fine-grained sensing applications such as small-scale finger

gesture recognition and chin movement tracking when speaking.

A small one centimetre change in location can lead to a signifi-

cant degradation in the performance of finger gesture recognition.

This performance instability issue restricts the practical adoption

of these sensing systems in real life.

The existing works assert the unstable sensing performance is

mainly due to multipath and quite a lot of methods are proposed
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to either remove the multipath [28, 30, 32, 40] or avoid the inter-

ference of multipath [38] by selecting subcarriers or channels not

affected by multipath. On the other hand, separating and removing

multipath are quite challenging. Even with the help of advanced sig-

nal processing techniques and dedicated hardware such as phased

antenna arrays, the performance of multipath removal is still not

satisfactory [28], requiring further research in this area.

In this work, we study the wireless signal propagation theory to

explain the reason why unstable sensing performance occurs for

fine-grained activity sensing and propose a novel method to address

the issue. Instead of trying to separate and remove the multipath

which is challenging, we create one extra “virtual” multipath in

software and utilize the created multipath to help improve the

wireless sensing performance.

More specifically, we observe that at different locations, the same

subtle movement can induce very different signal variations, caus-

ing unstable wireless sensing performance. When the movement-

induced signal variation becomes too small, the movement can

hardly be detected and the sensing performance becomes poor. The

fundamental reason behind this issue is that the movement-induced

dynamic reflection signal vector has varying phase differences with

respect to the composite static signal vector at different locations

and this phase difference actually determines the amplitude of the

captured signal variation and accordingly the sensing capability.

By changing the target’s physical position, it is possible to vary

this phase difference and find those physical positions at where

good sensing performance can be achieved. However, changing the

target’s physical position is not only inconvenient but also intrusive.

In practice, it is also very difficult to change the target’s position by

a precise small amount say 2cm. Inspired by the feasibility of creat-

ing a real multipath via placing a metal plate besides the transceiver

to improve the sensing performance, we propose to inject “virtual”

multipath in software to enlarge the signal variation caused by the

target movement without requiring to change the target’s physical

position nor to place one physical reflector. With carefully designed

“virtual” multipath, we can tune the phase difference to the expected

value to maximize the sensing performance purely in software.

Assuming there is only onemoving object in a static environment

as shown in Figure 1a, we could group the signal paths reaching

the receiver into two categories: dynamic path and static paths.

The dynamic path is the signal path induced by the moving target

while the static paths are composed of the direct path and reflected

paths from the walls and static objects in the environment. If we

represent the signals of dynamic and static paths as space vectors,

the dynamic path vector induced by the target’s movement rotates

with respect to the composite static path vector as shown in Fig-

ure 1b, inducing sinusoidal-like signal variation. In essence, the

phase difference between the dynamic vector and static vector is the

key factor which determines the sensing performance. As shown

in Figure 2, for the same movement, the signal variation is much

larger when the phase difference is 90 degrees than when the phase

is 0 degree. By adding a “virtual” multipath, we are able to control

the phase difference between the dynamic path and the compos-

ite static path, maximizing the signal variation and improving the

sensing performance.

The main contributions of this work are summarized as follows:

(1) This work addresses one important issue of fine-grained

wireless sensing: the sensing performance is unstable and

there are always “blind spots” at where the sensing perfor-

mance is extremely poor. From the vector representation

perspective, we explain the reason theoretically and verify

it with experiments.

(2) We investigate the multipath effects on sensing in theory

and propose to add “virtual” multipath in software to boost

the sensing performance at “blind spots”. We believe the

principle can be extended to improve sensing performance

with other technologies such as RFID and sound.

(3) We demonstrate the effectiveness of our method by applying

it on three Wi-Fi based fine-grained sensing applications: (i)

respiration detection; (ii) finger gesture recognition and (iii)

chin movement tracking when speaking. Extensive experi-

ments show that our method can significantly improve the

sensing performance. We envision it as a general method

to be applied to benefit a large range of wireless sensing

applications.

2 PRELIMINARY

In this section, we first introduce the basics of wireless sensing.

Then we model the fine-grained human activities and present the

insight to improve sensing performance.
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Table 1: The movement displacement of fine-grained activities

Scenario Movement displacement Path length change Phase change

Normal breathing (Anteroposterior dimension) 4.2 ∼ 5.4mm ≤ 1.08cm ≤ 68◦(≤ 0.5π )

Deep breathing (Anteroposterior dimension) 6 ∼ 11mm ≤ 2.2cm ≤ 140◦(≤ π )

Chin displacement (Distance to Los ≤ 20cm) 5 ∼ 20mm ≤ 1.42cm ≤ 89◦(≤ 0.5π )

Finger displacement (Distance to Los ≤ 20cm) 15 ∼ 40mm ≤ 2.71cm ≤ 170◦(≤ π )

2.1 Modeling wireless sensing

Wireless signals arrive at the receiver through multiple paths from

the receiver. Channel State Information (CSI) is used to quantify

the wireless channel between the transmitter-receiver (Tx-Rx) pair.

Each path has its own Channel State Information (CSI). In essence,

CSI characterizes the Channel Frequency Response (CFR) between

an antenna pair which is known as a link. For carrier frequency

f of each link, the CSI (H (f , t)) at time t has the relationship

Y (f , t) = H (f , t) × X (f , t), where X (f , t) and Y (f , t) are the fre-
quency domain representations of the transmitted and received

signals, respectively [34].

If an RF signal arrives at the receiver through N different paths,

then the total CSI is the linear superposition of all paths’ CSIs,

which can be denoted as

H (f , t) =
N∑

k=1

Hk (f , t)

=

N∑

k=1

|Hk (f , t)|e
−j ·2πdk /λ

(1)

where Hk (f , t) is the Channel State Information (CSI) of the kth

path, |Hk (f , t)| is amplitude of Hk (f , t), dk is the length of the kth
path, and λ is the wavelength for carrier frequency f .

The phase of a Wi-Fi signal rotates when the signal propagates

in the air. Consider a scenario in Figure 1a, where the Wi-Fi signal

is also reflected by wall and human body besides the Line-of-Sight

(LoS) path. The LoS path and the path from the static wall are static

paths. The CSI of a static path is a constant in a short period of time.

On the other hand, the path reflected from a moving target is called

a dynamic path and the CSI changes with the movement. In the

complex plane in Figure 1b,Hs represents the static path component

which contains the LoS path and the reflected path from the wall.

Hd represents the dynamic path. Ht is the resultant signal received

at the receiver and is the linear superposition of Hs and Hd . When

human target moves, the dynamic path changes accordingly.Within

a short period of time, the signal amplitude of dynamic vector can

be considered as a constant but the phase changes dramatically.

The phase change causes the dynamic vector Hd to rotate with

respect to the static vector Hs , as shown in Figure 1b. Thus, the

resultant signal Ht also changes with the dynamic path signal. The

amplitude of the resultant signalHt changes like a sinusoidal curve,

denoted as

|Ht |
2 = |Hs |

2 + |Hd |
2 + 2|Hs | |Hd | cos(θs − θd ) (2)

When the length of the dynamic path gets changed by λ, its phase
rotates a full circle (2π ), which means Hd rotates 360 degrees.

2.2 Sensing fine-grained human activities

We first present the model of subtle movements caused by fine-

grained activities. We analyze three typical activities, i.e., human

respiration, small-scale finger movement, and chin movement when

speaking, as shown in Figure 3. Human respiration involves res-

piratory cycles of inhalation and exhalation with expansion and

contraction of lungs. Hence, the human chest can be modeled as a

varying-size semi-cylinder, where the outer cylinder surface corre-

sponds to the chest positions during the process of respiration [29].

The outer cylinder surface is a moving reflector for the RF signal.

When we speak, our chin slightly moves and becomes a moving

reflector, inducing RF signal variations. Similarly, for finger move-

ment, the finger moves slightly for various finger gestures, causing

RF signal variations.

Figure 3: Fine-grained human activities: finger gesture,chin

movement when speaking, respiration

In order to sense these fine-grained activities, it is necessary

to understand how the received RF signal varies with the signal

propagation length change due to the subtle movement. Table 1

presents the amount ofmovement displacement, path length change

and phase change at a carrier frequency of 5.24GHz for the three

fine-grained activities. From Table 1, we can see that the path length

change induced by fine-grained activity movement is less than λ/2
(2.86cm). Thus the signal variation is a fragment of the sinusoidal

waveform. It is obvious that the larger the signal variation induced,

the easier the movement can be sensed (detected). However, the

same amount of movement induces very different signal variations

as shown in Figure 2. We reveal that the phase difference between

the dynamic vector and static vector is the key to determine the

signal variations (Section 3).

Intuitively, there are two ways we can change the phase differ-

ence to enlarge the signal variation. One way is to adjust the phase

of the dynamic vector by changing the target’s physical location.

This method requires the target to change the position, which is
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intrusive. The other way is to adjust the phase of the static vec-

tor, which does not require participation of the target. Initially, we

change the phase of the static vector by introducing a real multipath

created with a metal plate placed besides the transceiver. However,

adjusting the position and orientation of the metal plate for the

required multipath is neither convenient nor practical in real life.

Thus, we propose to add a “virtual” multipath to change the phase

of the static vector. The “virtual” multipath serves exactly the same

role as a real static multipath and at the same time, eliminates the

need of an extra metal plate as a reflector.

In the next section, we will quantify the sensing capability with

signal variation and introduce our method to leverage multipath to

improve the sensing performance.

3 ENHANCING FINE-GRAINED ACTIVITY
SENSINGWITH MULTIPATH

In this section, we first propose metrics to characterize the sensing

capability and derive the factors affecting the sensing capability.

With the detailed quantitative analysis, we clearly explain how to

control the multipath to improve the sensing capability at each

position. At last, we describe how to apply the proposed method to

improve the performance of the sensing applications.

3.1 The sensing capability analysis for
fine-grained activities

Hs

Hd1

s
I

θd2

Hd2

θd1

Ht1

Ht2

O

I

(a) Amplitude difference

Hs

s

ΔθsdΔ

∆θd12
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I
O

I

(b) Representation of Δθsd and
Δθd12

Figure 4: Vector representation for amplitude difference and

affecting factors

The sensing capability is quantitatively related to the signal am-

plitude variation caused by themovement. The amplitude difference

can be calculated as

Δ|H | = |Ht2 | − |Ht1 | =
|Ht2 |

2 − |Ht1 |
2

|Ht1 | + |Ht2 |
(3)

Placing Equation 2 into Equation 3, we obtain

Δ|H | =
2|Hs | |Hd | cos(θs − θd2) − 2|Hs | |Hd | cos(θs − θd1)

|Ht1 | + |Ht2 |

=
4|Hs | |Hd | sin(θs −

θd2+θd1
2 ) sin

θd2−θd1
2

|Ht1 | + |Ht2 |

(4)

where θs ,θd1,θd2 are the phases of signal vector Hs , Hd1, Hd2

respectively. |Ht1 | and |Ht2 | are the amplitudes of the composite

vector Ht1, Ht2, as shown in Figure 4a. Note that for a small-scale

movement, the amplitude of the dynamic vector can be considered

as a constant1 so |Hd1 | = |Hd2 | = |Hd |. To simplify Equation 4, we

define the phase difference between the dynamic path and static

path as Δθsd

Δθsd = θs −
θd2 + θd1

2
. (5)

We define the phase change of the dynamic vector as Δθd12

Δθd12 = θd2 − θd1 (6)

Δθsd and Δθd12 are both shown in Figure 4b. With the two defined

new parameters, the amplitude difference can now be simplified as

Δ|H | =
4|Hs | |Hd | sinΔθsd sin

Δθd12
2

|Ht1 | + |Ht2 |
(7)

As the dynamic vector represents the much weaker reflected signal,

|Hd | is much smaller than |Hs | (|Hs | � |Hd |). Thus, |Ht1 | ≈ |Hs |

and |Ht2 | ≈ |Hs |. So Equation 7 can be simplified as

Δ|H | = 2|Hd | sinΔθsd sin
Δθd12
2

(8)

So the sensing capability can now be defined as

η = | |Hd | sinΔθsd sin
Δθd12
2

| (9)

From Equation 9, we can see that the sensing capability is de-

termined by three factors: (i) the magnitude of the dynamic vector

|Hd |; (ii) the phase difference between the static vector and dy-

namic vector Δθsd and (iii) the phase change of the dynamic vector

due to subtle movement Δθd12. We discuss the three factors and

corresponding physical interpretations below.

• |Hd | is the magnitude of the dynamic vector. |Hd | is gener-

ally much smaller than |Hs |, because it is a reflected signal.

|Hd | becomes even smaller with a larger path length as the

reflected signal needs to propagate longer distance in the air.

That is to say, when the target is far away from the Tx-Rx

pair, the sensing capability is poor. For a specific sensing

position, the amplitude |Hd | remains roughly the same dur-

ing the process of these subtle movements such as human

respiration and chin movement.

• Δθsd is the phase difference between the static vector Hs

and the dynamic vector Hdm . Since the dynamic vector has

a starting point and an ending point, we employ Hdm to

represent the average of the two. The static vector Hs re-

mains unchanged. When the length of the reflection path

changes by one wavelength2, the dynamic vector Hd rotates

1The signal amplitude is related to the path length. A 2-3cm path length change is
negligible compared to the meter-level path length and thus signal amplitude can be
assumed as a constant.
2λ = 5.73cm for a carrier frequency of 5.24GHz

142



Boosting fine-grained activity sensing... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

                     

Hs
Ht1

s I

I

Ht2

(a) (c) (d)

Hdm

(b)

Hs

Ht1

s I

I

Ht2

Hdm

Hs
Ht1

s I

I

Ht2

Hdm

Signal amplitude 
variation

Vector 
representation

Hs Ht1

s I

I

Ht2

Hdmmmmm

OOOO

Figure 5: The relation between detectability of subtle movements and sensing capability phase

a full circle (360◦). So a few centimetres of change in target’s

position results in a non-negligible change in Δθsd , affecting
the sensing capability. The value of sinΔθsd is between 0

and 1. When the dynamic vector and the static vector are at

the same direction, sinΔθsd is 0. This induces a minimum

signal variation which is easily merged by noises, leading

to undetectability of the movement. When the dynamic vec-

tor is perpendicular to the static vector, Δθsd is 90◦ and the

maximum signal variation is obtained with a high sensing

capability. This phase difference is thus termed as sensing

capability phase.

• Δθd12 is the phase change of the dynamic vector during

the process of a subtle movement. It is determined by the

path length change of the dynamic path and is related to the

displacement of the subtle movement. For instance, Δθd12
is determined by the breath depth for respiration and the

amount of chin movement when speaking.

Among the three factors, Δθsd is the key determining factor

for the sensing performance. We study the effect of Δθsd on the

sensing performance with a same subtle movement. Figure 5 shows

the signal amplitude variation with four typical sensing capability

phases. We can see that, when Δθsd = 0°, the movement causes

a minimum amount of signal variation. This small variation may

easily becomes undetectable in a real-life noisy environment. This

is the situation when “blind spots” occur. If the target moves slightly

to a second location and now Δθsd = 45°, we can see that the same

amount of movement induces a larger signal variation and the

whole movement-caused phase change is in a monotonic interval.

If the target moves further, the dynamic vector continues to rotate

right. Let’s consider the scenario when the dynamic vector Hdm

is perpendicular to the static vector Hs as shown in Figure 5c, we

obtain the largest variation and this position has the best sensing

performance. If the target moves further to the position when the

dynamic vector Hdm becomes parallel to the static vector as shown

in Figure 5d, Δθsd = 180° which is again bad for sensing.

3.2 Improving sensing performance with
multipath

From the previous section, we know the phase difference (Δθsd )
between the dynamic and static vector is the key factor affecting

the sensing performance. We propose to leverage multipath, which

is commonly considered harmful in existing sensing literature, to

change the phase of the static vector.

Ht

Hd

Hs

12

O I

Q Amplitude variation

(a) Without multipath

Hsnew
Ht

Hd
Hm

Hs

12

α

O I
I

Q Q

Iα

(b) With multipath

Figure 6: The effect of adding multipath

As shown in Figure 6, when a new static multipath is introduced,

the original static vector and the new multipath vector together

form a new static vector. The dynamic vector is not changed but

now rotates around the new static vector. From the perspective of

vector transformation, adding such a multipath actually transforms

the original IQ vector space to the new I ′Q ′ vector space as shown

in Figure 6(b). After introducing a static virtual multipath, the static

vector would be rotated from Hs to Hsnew , making the variation

of the dynamic vector more distinguishable. With this multipath

added in, we can now tune the sensing capability phase to turn

a bad position into a good position for sensing. That is to say,

we can utilize the multipath to control the sensing capability at

each location. The sensing capability after the multipath is added

changes to

η = | |Hd | sin(Δθsd − α) sin
Δθd12
2

| (10)

The problem now is how we can change the phase of the static

vector to the right value to improve sensing performance. Note
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that introducing new static objects into the environment can create

extra multipaths, which will change the static vector. To verify this,

we move a metal plate 5mm forward and then 5mm backward with

the help of a sliding track to mimic the fine-grained activity in an

anechoic chamber as shown in Figure 7. We then place the metal

plate at a position with bad sensing performance. As shown in

Figure 8a, the signal variation is very small and thus it is difficult

to identify the 10 repetitive movements. Then without changing

the position of the first metal plate, we create a new real multipath

by placing a static metal plate besides the transceiver. After we

carefully adjust the metal plate, the signal variation becomes clear

enough to identify the 10 repetitive small movements, as shown in

Figure 8b. This benchmark experiment demonstrates the feasibility

of introducing extramultipathwith an object to enhance the sensing

performance.

However, there are a few issues in creating multipath with phys-

ical objects. First of all, due to the large surface area of the object,

it is non-trivial to precisely control the created reflection (mul-

tipath) generated. Furthermore, when the transceiver’s location

gets changed, the object’s physical location needs to be adjusted

carefully and this process requires human intervention which is

time-consuming and inconvenient.

To bypass the problems above, we propose a software based ap-

proach to create virtual multipath to control the sensing capability.

As shown in Figure 8c, a virtual multipath can serve the same role

as a real static multipath. The whole process of virtual multipath

addition contains the following three steps:

Step 1: Search Scheme for Phase Shift. As shown in Figure 6,

a newmultipath changes the phase of the static vector by α . And the
phase shift can change the detectability of fine-grained activities.

However, we have no idea of the original sensing capability phase

Δθsd from the original signal. Therefore, we propose a searching

scheme to transverse all possible phase shifts. Let phase shift α

vary from 0 to 2π with a fixed step size, e.g.,
π

180
, then the sensing

capability phase Δθsd +α also varies between 0 to 2π , even though

the original sensing capability phase Δθsd is unknown. With a

brute-force trial of all possible phase shifts, the optimal phase shift

which maximizes the sensing capability is one of them.

Step 2: Calculating Multipath Vector. Given the phase shift

α varies from 0 to 2π in Step 1, we explain how to calculate the

corresponding multipath vector. To understand the vector represen-

tation quantitatively, we construct a triangle to show the effect of

added multipath on the phase shift in Figure 9a.Hs ,Hm , andHsnew

(a) The distorted signal

(b) Real multipath

(c) Virtual multipath

Figure 8: The enhanced sensing signals by adding real mul-

tipath and virtual multipath

are the static vector, multipath vector and new static vector, respec-

tively. To determine the multipath vector Hm , firstly, we estimate

the static vector by averaging a period of the composite vector Ht .

This is an approximate estimation to obtain the static vector, which

introduces a slight deviation from the original sensing capability

phase. Our search scheme inherently overcomes this estimation

deviation, because it traverses all possible phases of shift to add the

multipath vector.

As shown in Figure 9b, for two different lengths of |Hsnew1 |

and |Hsnew2 |, two different multipaths |Hm1 | and |Hm2 | will be

obtained. However, the same phase shift α is achieved to ensure the

same amount of improvement in sensing performance. To simplify

the problem, the amplitude of Hsnew is set equal to |Hs | and this

value does not affect the phase shift α .
As shown in Figure 9a, for the triangle constructed above, the

static vector Hs , the amplitude of Hsnew and the phase shift α
are known now. Thus we can calculate the multipath vector Hm ,

including both the amplitude and phase. According to the law of

cosines, the amplitude of Hm is calculated as

|Hm | =
√
(|Hs |2) + |Hsnew |2 − 2|Hs | |Hsnew | cos(α) (11)

To obtain the phase ofHm , we employ the theorem
|Hm |
sinα =

|Hsnew |
sin β

.

The phase between the static vector and multipath vector β is calcu-

lated as arcsin
sinα |Hsnew |

|Hm |
. Thus the phase of the added multipath
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vector is calculated as

θm = θs + β − π (12)

For a given phase shift α , the multipath vector is calculated as

Hm = |Hm |e−jθm .

Step 3: Adding Multipath in Software. After obtaining the

multipath in vector form Hm = |Hm |e−jθm , we can create the

required multipath in software and add it on-to the original sig-

nal. For a period of original signal with N CSI samples So =
(CSI1,CSI2, ...,CSIN ), the new signal after adding multipath is

S(Hm ) = (CSI1 + Hm ,CSI2 + Hm , ...,CSIN + Hm ).

From the search scheme in Step 1, multiple multipaths can be

calculated. All the multipath vectors can be added to the original

signal separately and simultaneously in software. So a series of

signals are generated as signal set

Sm = {S(Hm1), S(Hm2), ...,S(Hml ), ...}

Among the signal set, there is an optimal signal which canmaximize

the sensing performance. We select the optimal signal based on

applications, which will be discussed in next section in detail.

3.3 Applying the proposed method to
fine-grained activity sensing

To verify the effectiveness of the proposed approach in Section 3.2,

we apply it to three fine-grained sensing applications: (1) respiration

detection; (2) finger gesture recognition and (3) chin movement

tracking when speaking. For different applications, we employ

different optimal signal selection strategy and post-processing ap-

proaches. Before these operations, we adopt the Savitzky-Golay

filter [22] to smooth the received raw noisy signal. Then we sepa-

rately process the filtered signal and select the optimal multipath

signal depending on application type.

Respiration detection. To detect human respiration rate, we

utilize a band pass filter to retain the signal frequency component

in 10-37 beats per minute (bpm) [16]. We extract the respiration rate

using Fast Fourier Transform (FFT) [6]. The dominant frequency

corresponds to the respiration rate of the target. To achieve best

sensing performance, we select the optimal signal whose peak value

in frequency domain is maximum to detect target’s respiration rate.

Finger gesture recognition. To recognize various finger ges-

tures, we design a selection algorithm based on the observation

that the large amplitude variation is better than the small one for

the same subtle movement. We obtain the difference between the

maximum amplitude value and the minimum amplitude value of the

signal in a sliding window (i.e., 1s in our implementation). Then we

choose the optimal signal with the largest difference to recognize

the finger gestures. Note that, there is a pause between the succes-

sive gestures, and the difference between the maximum amplitude

value and the minimum amplitude value within this pause period

is very small. We can thus employ this difference to detect pauses

and segment the signal for each gesture. A dynamic threshold (i.e.,

0.15 times of the difference in a window size) is set to detect the

pause. At last, we employ a modified 9-layer neural network LeNet

5 [11] to recognize the gestures.

Chin movement tracking when speaking. To achieve the

best performance for chin movement tracking, we apply the se-

lection and segmentation algorithm mentioned in finger gesture

recognition. Due to the single signal pattern of chin movement, we

can choose the optimal signal with the largest variance to segment.

After segmenting, each fragment corresponds to a word. Then an

advanced peak finding algorithm [16] which can remove fake peaks

is employed to count the syllable number for each word, which

further constitutes sentences.

4 VERIFY THE AFFECTING FACTORS WITH
BENCHMARK EXPERIMENTS

In this section, we carry out benchmark experiments in an anechoic

chamber to verify the proposed theory and the effects of the three

affecting factors described in Section 3.1.

Tx antennaRx antenna

WARP v3 kit

LoS=100cm

50cm

120cm
40cm

35cm

Sliding track

Metal plate

Figure 10: Experimental deployment in an anechoic cham-

ber

Experimental setting: To minimize the amount of multipath

interference, our experiments are carried out in an anechoic cham-

ber as shown in Figure 10. The Rice WARP v3 platform [1, 2] is

employed as the transceivers. The WARPLab implementation [3]

is used to collect Wi-Fi packet samples. We configure one pro-

grammable RF interface of WARP as the transmitter and one as the

receiver. Each RF interface is equipped with one omni-directional
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antenna. A Dell laptop (Precision 5520) with Xeon CPU and 16G

RAM is connected to WARP via an Ethernet cable to collect packet

samples and process the data. The wireless signal is transmitted

in the 5.24GHz frequency band with a 40MHz channel bandwidth.

The antennas are placed perpendicular to the ground surface with

a height of 50cm as shown in Figure 10. The LoS distance between

the transceivers is set as 100cm. We employ a metal plate with a

size of 35cm × 40cm as the target. And the metal plate moves along

the perpendicular bisector of the transceivers with the help of a

sliding track which is controlled by Raspberry Pi 3 Model B [4].

Experiment 1: Verify the basic model. We move the metal

plate along the perpendicular bisector of the transceivers from3

89cm to 79cm at a speed of 1cm/s with the help of a sliding track.

According to the vector representation model described in Section 3,

the dynamic vector rotates with the static vector. When the dy-

namic path length changes λ, the dynamic vector rotates 360◦. The

results are shown in Figure 11 and we can see that the dynamic

vector generates close to perfect circles, demonstrating the correct-

ness of the model. In Figure 11, the black dot is the origin of the

coordinates. We can see that dynamic vector rotates clockwise, and

the rotation phase is exactly matching with the theoretical rotation

phase 1080◦ (3 circles). Besides, the magnitude of dynamic vector

remains approximately the same in a short movement distance,

which satisfies the hypothesis we made in Section 3.1.

Hs

Hd

Ht

Figure 11: Verify themodel. The change in color of the curve

describes the time series. From blue to red means varying

from beginning to end.

Experiment 2: Verify the effect of the magnitude of the

dynamic vector (|Hd |). We move the metal plate along the per-

pendicular bisector of transceivers from 90cm to 50cm away from

LoS at the speed of 1cm/s . From Figure 12, we can see that the

amplitude variation is around 2.5dB at distance 90cm and gradually

increases to 4.5dB at distance 50cm. These results are consistent

with the theoretical analysis: the further the metal plate is, the

smaller the amplitude variation is. This is because the reflection

signal attenuates with longer propagation distance [8].

Experiment 3: Verify the effect of sensing capability phase

(Δθsd ). The metal plate repetitively moves along the sliding track

389cm and 79cm are measured from the metal plate to the LoS path of the transceiver
pair.

4.5dB
2.5dB

Figure 12: Verify the effect of position

at a small scale to mimic the fine-grained activity, e.g, human respi-

ration. For each motion cycle, the metal plate moves forward 5mm
and then moves backward 5mm. We evaluate the sensing capability

at 10 positions with adjacent positions spaced by 5mm. The first

position is at 60cm from the LoS path. At each position, the metal

plate performs 10 repetitive cycles of movements. Figure 13 shows

the signal variation throughout the process. We observe that the

sensing capability changes with the position of the metal plate.

At the beginning, the metal plate is located at a bad position for

sensing, at where the signal variation can not be identified. Then

when the metal plate moves forward by just 5mm, we reach a good

position with clearer and stronger signal variation. When the metal

plate moves forward by another 5mm, the target is still at a good

position. Finally the metal plate moves to a relatively bad position.

The experimental results obtained during this process match the

theoretical results in Figure 5 well. Note that, we can still observe

clear fluctuation at a bad position for metal plate. However, for a

human target, the signal induced is much weaker than the metal

plate, which is easily merged by noise and can not be detected at

bad positions.

(a) Bad position1 (b) Good position1

(c) Good position2 (d) Bad position2

Figure 13: Verify the effect of sensing capability phase

Experiment 4: Verify the effect of the phase change of the

dynamic vector (Δθd12). We place the metal plate at 60cm from

the LoS path. The same as in Experiment 3, we mimic the subtle

movement of the fine-grained activities. For Case 1, the metal plate

moves forward for 5mm and then backward for 5mm. For Case 2, the

metal plate moves forward and backward for 10mm. We perform 10

repetitivemotions for both Case 1 and Case 2. The amount ofmotion
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displacement is linearly related to the phase difference Δθd12. We

compare the sensing capability of the two cases. From Figure 14,

we can see that the signal amplitude variation (1.8dB) for Case 2 is

clearly larger than that (0.7dB) of Case 1. This demonstrates that a

larger movement displacement increases the sensing capability.

1.8dB

0.7dB

Figure 14: Verify the effect of motion displacement

So far, we have verified the factors affecting the sensing perfor-

mance of fine-grained movements. We reveal the reason behind the

unstable sensing performance and also show how to locate those

“blind spots” with poor performance.

5 EVALUATION

We evaluate the performance of the proposed approach on three

device-free fine-grained sensing applications: (1) respiration detec-

tion; (2) finger gesture recognition and (3) chin movement tracking

when speaking.

5.1 Experimental setup

We implement our prototype system on WARP platform [1, 2] inte-

grated with a Virtex-6 FPGA. We place the transmitter and receiver

with a distance of 100cm between each other at the same height.

The signal is transmitted in the 5.24GHz frequency band with a

40MHz channel bandwidth. For the three fine-grained sensing ap-

plications as shown in Figure 15, we adopt different methods to

record the ground truths. The respiration rate is recorded by a fiber-

based system (VitalPro 4374 Fiber Sensor Mat). The groundtruth

of finger gesture recognition is recorded by a video camera. For

chin movement tracking, we utilize a voice recorder to capture each

spoken syllable.

Tx RxLoS=100cm

(a) Respiration detection

Tx Rx

LoS=100cm

Finger

(b) Finger gesture recogni-
tion

Tx RxLoS=100cm

Mouth

(c) Chin movement track-
ing

Figure 15: Real deployment using WARP platform for fine-

grained activity sensing

5.2 Leveraging multipath to change the effect
of respiration detection

For respiration sensing, we recruit five participants and each of

them is asked to lie on bed and breathe naturally. We record the res-

piration data for each participant. Figure 16a shows the smoothed

signals for respiration sensing at a bad position. We observe that

the original raw signal does not show periodic variations. By intro-

ducing different amounts of phases to the added multipath vector,

Figure 16b-16d show the signal variations with 30◦, 60◦ and 90◦

sensing capability phase shift, respectively. We can see that for

a bad sensing position, the signal variation and accordingly the

respiration sensing performance is significantly enhanced with

carefully designed multipath, demonstrating the effectiveness of

our proposed method.

(a) Original signal for respiration (b) 30◦ sensing capability phase shift by
adding a multipath

(c) 60◦ sensing capability phase shift by
adding a multipath

(d) 90◦ sensing capability phase shift by
adding a multipath

Figure 16: The effect of different multipaths in respiration

sensing

5.3 Achieving full coverage respiration
detection

It is critical to remove the “blind spots” and achieve a full coverage

for respiration sensing. We employ a heatmap of simulation to

visualize the sensing capability information at each location. We

generate the heatmap of respiration sensing at different locations in

Figure 17a without our proposed method. We can see bad positions

and good positions appear alternatively.

Inspired by building orthogonal static vector to achieve the com-

plementation, we construct a multipath vector to shift the phase

of static vector by π/2. Figure 17b demonstrates the results after

introducing this multipath. We can clearly observe a reversed al-

ternating pattern, the bad positions transform to good positions

and vice versa. Combining these two heatmaps, the new sensing

heatmap has no “blind spots” and good sensing performance can

be achieved at all locations as shown in Figure 17c.

We further validate the full coverage respiration sensing per-

formance in a real office environment as shown in Figure 15a. We

deploy the WARP transceivers with a distance of 100cm between

each other and the height is changed from 20cm to 100cm at a

step size of 10cm. We ask each participant to lie on the bed and
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(a) Original simulated results (b) Orthogonal phase transform (c) Combination results (d) Real deployment results

Figure 17: Sensing heatmap for respiration detection (Red color indicates good positions and blue color indicates bad positions)

breathe naturally. The participant moves his position and the dis-

tance between the participant and the transmitter (Rx) is varied

from 30cm to 70cm at a step size of 5cm. Note that the the sensing

area is divided into grids with a size of 5cm×10cm. From Figure 17d,

we can see that the “blind spots” are removed with the proposed

method and good respiration sensing performance is achieved at

all the positions. For the five participants, we achieve an average

respiration rate sensing accuracy of 98.8% across all the grids.

5.4 Enhancing finger gesture recognition

Contactless finger gesture recognition is an attractive human-comp-

uter interaction method. For example, finger gesture can be used

to control home appliances such as TV and lights. In this work,

we design eight finger gestures for control functions including

return console, adjust mode, go back, turn on/off, yes to confirm, no

to cancel, up to go to previous page or turn up volumes, down to go

to next page or turn down volumes as shown in Figure 18. Taking

memorability into consideration, the finger gestures mimic their

original handwriting counterparts in one-dimension, which only

needs to move finger up and down (as shown in Figure 18). For

instance, the finger gesture for “m (mode)” is “up-down-up-down”.

The gesture design also employs moving distance of the finger (i.e.

around 2cm for short and around 4cm for long) for differentiation.

console mode turn on/offback

c m b t
yes no downup

y n u d

Figure 18: Finger gestures design

Now we show the capability of multipath to enhance the perfor-

mance of finger gesture recognition. The experimental deployment

is shown in Figure 15b. We recruit five participants to perform

finger gestures. We take gesture yes and gesture up as examples.

Figure 19a and Figure 19b depict the sensing signal at a bad position

for gesture yes and gesture up, respectively. After introducing a

multipath with 60◦ and 270◦ phase shift respectively, we observe

obvious and unique signal variations appear in Figure 19c and Fig-

ure 19d. We can employ the induced unique variation pattern to

identify each gesture. Figure 20 shows the accuracy performance

(a) Original signal for gesture yes (b) Original signal for gesture up

(c) Transformed signal for yes (d) Transformed signal for up

Figure 19: The changing effect of finger gesture recognition.

of finger gesture recognition without and with proper multipath.

The overall recognition accuracy is increased from 33% to 81% on

average.

Figure 20: Accuracy for finger gesture recognition.

5.5 Enhancing the chin movement tracking

Now we carry out experiments to evaluate how the multipath im-

proves the performance of chin movement tracking when speaking.
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The two transceivers are placed with a distance of 100cm at the

same height, shown in Figure 15c. The participants are asked to

read two sentences “How are you? I am fine” and “Hello, world”.

All the words in the first sentences are monosyllabic while the sec-

ond sentence contains two disyllable words. The participant’s chin

exhibits subtle movement during the process of pronouncing each

syllable. The speaking process is recorded by a voice recorder as

ground truth. Figure 21a and Figure 21b show the original sensing

signal when reading these two short sentences. We are not able to

see obvious signal variations corresponding to the chin movement.

Then we introduce a multipath with 90◦ phase shift to enhance the

sensing effect. Figure 21c shows the enhanced result when reading

the first sentence and we can observe six clear valleys correspond-

ing to the six syllables, which exactly match the ground-truth audio

signal. For the second sentence in Figure 21d, we can also accu-

rately obtain the syllables of each word and each word contains

two valleys.

(a) Original signal (b) Original signal

howare you I amfine

(c) Transformed signal

he llo wor ld

(d) Transformed signal

how are you I am fine

(e) Ground truth

he llo wor ld

(f) Ground truth

Figure 21: The changing effect of chin movement tracking

when speaking.

To show the overall performance, we recruit five participants

to read multiple sentences. Each sentence contains 2-6 words. The

sentences contain “I do”, “How are you”, “How do you do”, “How

can I help you”, “What can I do for you”, etc. The syllables include

[e],[i],[u],[s], [l],[m],[h],[k],[w], etc. We evaluate the performance

of counting the number of syllables in a spoken sentence. Figure 22

shows the confusion matrix for syllable counting accuracy. Without

any learning algorithm, the average counting accuracy achieved is

92.8%. There is no significant difference in counting accuracy when

the number of syllables increases.

2 1.0 0.0 0.0 0.0 0.0 
3 0.06 0.91 0.03 0.0 0.0 
4 0.0 0.03 0.90 0.07 0.0 
5 0.0 0.0 0.06 0.91 0.03 
6 0.0 0.0 0.03 0.05 0.92 
 2 3 4 5 6 
 Number of syllables 

Figure 22: Accuracy for chin movement tracking when

speaking.

6 DISCUSSION

The effect of secondary reflections. Besides the direct reflection

from the human target, there exist secondary reflections which

bounce off the human target first and then bounce off other objects

in the environment before reaching the receiver. In general, the

secondary reflections are much weaker which can be ignored [8].

In some special scenarios when the target performs activities near

to the wall, the secondary reflections can be relatively strong. We

design an experiment to detect the target’s respiration when the

target is near to a large metal plate which creates strong secondary

reflections. The experimental results show that even in this scenario

with strong secondary refections, our method is robust and the

sensing performance is hardly affected.

The strength of the dynamic and static vectors. Based on

the relative signal strength between the dynamic and static vectors,

we have three cases: Case 1: the dynamic vector is smaller than the

static vector; Case 2: the dynamic vector is comparable with the

static vector and Case 3: the dynamic vector is larger than the static

vector. For fine-grained activity sensing, the two transceivers are

placed close to each other with a direct LoS path. In the deployment

with clear LoS path, the dynamic vector is much smaller than the

static vector (Case 1). The proposed method works well in this case.

If the LoS path is totally blocked or attenuated to be smaller than the

dynamic vector, we fall into Case 3 and our method has difficulty

to achieve the required amount of phase shift for performance

enhancement. Thus it is suggested to have clear LoS path for the

proposed method to work properly.

Interference fromsurrounding people. Peoplewalking around

bring in interference for sensing. However, the interference due

to surrounding people’s movements is quite limited as the target

is still closer to the transceiver pair. Thus, the interference can be

filtered out with the Savitzky-Golay filter described in Section 3.3.

On the other hand, dealing with interference from the target’s other

body parts is more challenging which remains an important future

research topic for us.

Work with commodity Wi-Fi card. Our current implemen-

tation is based on WARP software-defined radio platform. It is

challenging to have our system implemented on commodity Wi-Fi

chipsets due to the changing Carrier Frequency Offset (CFO) and

accordingly random phase readings for each packet. In the future,

we plan to employ phase difference between adjacent antennas on

the same Wi-Fi hardware to address this problem.
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Multi-target sensing. It is challenging to passively sense mul-

tiple targets as the reflected signals from multiple targets are mixed

together. New theory needs to be developed and this remains one

important direction of our future research.

7 RELATEDWORK

Contact-free human sensing using wireless technologies has drawn

a lot of attentions from both academia and industry in recent

years. Compared with computer vision-based approaches [18, 20],

RF-based approaches can work without requiring a good light-

ing condition. A large variety of applications have been explored

via wireless sensing, ranging from coarse-grained indoor local-

ization [5, 14, 30, 32, 39], trajectory tracking [15, 21, 25, 35, 36],

activity recognition [31] to fine-grained keystroke identification [7,

13], hand gesture recognition [12, 19, 23, 27], vital sign monitor-

ing [6, 9, 16, 17, 29, 42–44], and speaking tracking [28]. However,

most of these work employ pattern-based approaches that heavily

rely on signal patterns and machine learning techniques, which

cannot explain the reason why signal patterns vary at different lo-

cations, let alone improve the system performance via a controlled

method.

Comparedwith pattern-based approaches, model-based approaches

are studied to build the relationship between the received signal

and human activities [37]. Wang et. al. [34] proposed the CSI-speed

model which quantitatively establishes the relationship between

the CSI value dynamics and human movement speeds to monitor

and recognize activities. The model has been applied in coarse-

grained activity recognition such as fall detection [34] and gait

analysis [33]. Wu et. al. [38] and Wang et. al. [29] propose to apply

the Fresnel Zone model for both coarse-grained and fine-grained

human activity recognition. In particular, Wang et. al. [29] reveal

that human respiration cannot be sensed at all locations with Wi-Fi

signals and there are “blind spots” in the sensing area. In order to

mitigate the “blind spots” problem, they proposed to use a linear

motor to change the location of the Wi-Fi transceivers which is not

realistic in real-life.

To cope with the multipath issue in wireless sensing, UWB [24,

26] technology with wide bandwidth (over 500MHz) is employed to

reduce the influence of multipath, whereas the bandwidth of Wi-Fi

signal is usually no more than 40MHz. For Wi-Fi based sensing,

some systems [28, 30, 32, 40] try to eliminate or avoid the effect of

multipath. For example, LiFS [32] removes the subcarriers which

are greatly affected by multipath, MFDL [30] calibrates the phase

difference to reduce the influence of multipath. WiHear [28] lever-

ages MIMO beamforming to reduce irrelevant multipath effects

introduced by omni-directional antennas, while WiWho [40] re-

moves the distant multipath by converting CFR to CIR. As far as

we know, there is no work trying to employ the phase difference

between the dynamic multipath vector and static multipath vec-

tor to improve the sensing performance. We address the unstable

sensing performance and “blind spots” issue by adding a carefully

designed man-made “virtual” static multipath.

8 CONCLUSION

In this paper, we analyze and identify the major factors that affect

the performance of fine-grained human activity sensing. By an-

alyzing the relationship between the static and dynamic signals,

we discover that the phase difference between the static and dy-

namic vector determines the sensing performance at each location.

We thus propose to add a carefully designed “virtual” multipath

to boost the sensing capability of the fine-grained human activity

to its maximum at each location. We apply the proposed method

on three fine-grained sensing applications and comprehensive ex-

perimental results demonstrate the effectiveness of the proposed

method. We envision the proposed method can also be applied to

improve the sensing performance of other wireless technologies

such as RFID or sound.
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